Abstract
The kiwifruit, Actinidia genus, has emerged as a nutritionally rich and economically significant crop with a history rooted in China. This review paper examines the global journey of the kiwifruit, its genetic diversity, and the role of advanced breeding techniques in its cultivation and improvement. The expansion of kiwifruit cultivation from China to New Zealand, Italy, Chile and beyond, driven by the development of new cultivars and improved agricultural practices, is discussed, highlighting the fruit's high content of vitamins C, E, and K. The genetic resources within the Actinidia genus are reviewed, with emphasis on the potential of this diversity in breeding programs. The review provides extensive coverage to the application of modern omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, which have revolutionized the understanding of the biology of kiwifruit and facilitated targeted breeding efforts. It examines both conventional breeding methods and modern approaches, like marker-assisted selection, genomic selection, mutation breeding, and the potential of CRISPR-Cas9 technology for precise trait enhancement. Special attention is paid to interspecific hybridization and cisgenesis as strategies for incorporating beneficial traits and developing superior kiwifruit varieties. This comprehensive synthesis not only sheds light on the current state of kiwifruit research and breeding, but also outlines the future directions and challenges in the field, underscoring the importance of integrating traditional and omics-based approaches to meet the demands of a changing global climate and market preferences.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have