Abstract

BackgroundAdenoid cystic carcinoma (ACC) is a rare cancer with an aggressive phenotype and the high incidence of recurrence and distant metastasis severely affects the overall survival of ACC patients. Understanding the molecular mechanisms that drives ACC could improve the treatment and outcomes of patients with this disease.MethodsActionable genetic alterations in 52 surgically resected ACC tissue samples were identified using targeted next generation sequencing (NGS). Expression of c-KIT/PDGFRα/VEGFR2 was assessed by immunohistochemistry (IHC). Sunitinib, a multi-targeted small molecule inhibitor of receptor tyrosine kinases (RTKs), was used off-label in one ACC patient harboring the KIT/PDGFRA/KDR amplification.ResultsPotentially actionable genetic alterations were detected in 61.5% (32/52) of patients. In addition to the common actionable targets identified in NOTCH signaling and FGF/PI3K pathway, multiple novel gene fusions were detected in 7.7% (4/52) of ACC patients. Specifically, the KIT/PDGFRA/KDR amplification was identified in 2 of 52 (3.8%) cases and triple positive c-KIT/PDGFRα/VEGFR2 by IHC was associated with a significantly higher likelihood of distant metastasis. Furthermore, an advanced ACC patient with the KIT/PDGFRA/KDR amplification and who was positive for three encoded proteins showed a partial response to sunitinib.ConclusionsA total of 61.5% of ACC patients were found to harbor at least one actionable genetic alteration via a targeted NGS in this study. The KIT/PDGFRA/KDR amplification as well as triple positive c-KIT/PDGFRα/VEGFR2 defined a distinctive molecular phenotype that was characterized by distant metastasis. Clinical trials investigating the application of RTKs in ACC patients with the KIT/PDGFRA/KDR amplification or triple positive c-KIT/PDGFRα/VEGFR2 are warranted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.