Abstract

BackgroundTargeted therapy, especially the use of poly (adenosine diphosphate ribose) polymerase (PARP) inhibitors (PARPis), has improved the outcome of patients with ovarian cancer. However, most high-grade serous ovarian cancer (HGSOC) patients have wild-type BRCA1/2, and it is necessary to disclose more potential novel targets for other available targeted drugs. So, detection of genetic alterations beyond BRCA1/2 is critical to screen HGSOC patients for personalized therapy. In this study, a broad, hybrid capture-based next-generation sequencing (NGS) assay was used to identify actionable genetic alterations from HGSOC cancer tissues. MethodsSixty-eight patients with HGSOC were enrolled, including 6 International Federation of Gynecology and Obstetrics (FIGO) stage I, 15 stage II, 37 stage III and 10 stage IV patients. All patients signed informed consent forms. Potentially actionable genetic alterations, including base substitutions, indels, copy number alterations, and gene fusions, were identified using targeted NGS. ResultsIn our study, 14.7% (10/68) of the tumors harbored actionable genetic alterations in patients with BRCA1. A total of 25.0% (17/68) of patients without BRCA1 mutations harbored other actionable genetic alterations, such as homologous recombination repair (HRR) pathway-related genes (ATM, CDK12, FANCA, and FANCD2), PI3K/AKT/mTOR pathway genes (NF1, FBXW7, PIK3CA, PTEN, TSC1, and TSC2), and some other genes (ARID1A, FGFR1, KRAS, and NRAS). Furthermore, some patients harboring ARID1A or NF1 actionable genetic alterations showed good clinical efficacy to immune checkpoint inhibitors (ICIs) and everolimus, respectively. ConclusionsOur research indicates that 39.7% (27/68) of patients with HGSOC harbored at least one actionable genetic alteration. 25.0% (17/68) of patients had somatic mutations or copy number variations beyond BRCA1 mutations and might be treated with off-label therapy or to be allocated into clinical trial. NGS assays of HGSOC patients are necessary to screen actionable genetic alterations to guide personalized and precise treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.