Abstract

In this paper, we develop an accurate kinetostatic modeling method for bridge-type amplifiers by incorporating the impacts of nonlinear shear effect, center-shifting and load-stiffening. To account for the nonlinear stress-stiffening and shear effects, a Timoshenko Beam Constraint Model (TBCM) is first investigated to accurately predict the deformations of the short beam flexure hinges popularly employed in the bridge-type amplifiers. Accordingly, a flexible branched chain model is established for bridge-type amplifiers, where the input and output displacements, as well as the displacement amplification ratio and the input stiffness, are derived. The results indicate significant nonlinearities of the amplification ratio and the input stiffness with respect to the driving forces, which are further verified by the finite element analysis (FEA) results. The proposed modeling method can derive a more accurate model of the bridgetype amplification mechanism to capture its kinetostatic behaviors, which can better support the design and control of flexure mechanism based nano-manipulating systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.