Abstract

In previous work we showed that the kinetostatic method is very effective in computing the increase in value of the spring constants of an AFM free (with or without added mass) and supported rectangular cantilever for higher mode oscillations relative to their values for natural vibration. We have considered in all previous cases that added mass is a concentrated one. However, the additional mass may be an extended one particularly in the case of a V-shaped cantilever. In this article we consider the influence of the constituent beam’s (leg’s) mutual skew and the altered position of the nodal points in the case when the attached extended triangular (trapezoid) mass of the V-shaped cantilever has a significant moment of rotational inertia and a center of this mass gravity located beyond the constituent beam end. We show that considering these effects in using the kinetostatic model yields results for the ratios of the spring constants at higher modes of oscillation and their values at the first frequency natural vibration for a V-shaped cantilever which are in good agreement with the thermomechanical noise amplitudes obtained by other researchers. This should prove helpful for the proper calibration of V-shaped cantilevers whose application with higher modes oscillation provides increased measurement sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.