Abstract

A high porous three-dimensional structure of ternary NiPC alloy (3D-NiPC) was prepared with a simple, cheap, and efficient method called dynamic hydrogen bubble template (DHBT) and characterized by means of microstructural and electrochemical techniques with regard to its catalytic effect toward the hydrogen evolution reaction (HER) in an alkaline solution. The electrochemical efficiency of the alloy has been evaluated on the basis of electrochemical data obtained from the steady-state polarization Tafel curves and electrochemical impedance spectroscopy (EIS) in a 1 M NaOH solution at 298 K. The results showed that the three-dimensional structure of NiPC alloy effectively increased its catalytic activity toward the HER. The 3D-NiPC alloy is characterized by low overpotential at practical high current densities, large real surface area, and double-layer capacitance. Also, the 3D-NiPC showed very good physical and electrochemical stability. A high roughness factor (three orders of magnitude; Rf=3550), low overpotential at 250 mAcm-2 (η250=173.3 mV), and low charge transfer resistance (Rct=100 Ωcm2) were obtained in the best conditions, in 1 M NaOH at 298 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.