Abstract

Effective concentrations (CE) of Zn measured by the technique of DGT (diffusive gradients in thin films) were compared, along with total concentrations of Zn and the concentrations of Zn in soil solutions, to Zn concentrations in plants. Soils variously contaminated with Zn were collected in the vicinity of two galvanized electrical transmission towers (pylons) and two motorway crash barriers. Lepidium sativum was grown in each soil and in corresponding control soils amended with ZnCl2 to similar total Zn concentrations. CE, concentrations in soil solution, and total Zn were measured in all soils, and total Zn was measured in the plant shoots. The CE values, soil solution Zn, and shoot Zn concentrations were all larger in ZnCl2 amended soils than in field contaminated soils at corresponding total Zn. Correlations between the concentration of Zn in the plants and the measured soil parameter followed the order CE > soil solution > total Zn. The low scatter in the plot of log plant concentration versus log CE revealed a relationship with two distinct features. Plant Zn was between 100 and 300 mg/kg up to an effective Zn concentration of about 2 mg/L, above which plant Zn increased steadily with increasing CE. Use of a dynamic model to interpret the DGT measurement suggests that the intrinsic rate of release of Zn from solid phase to solution, expressed as a rate constant, is much higher for soils that receive fresh supplies of Zn. This finding provides a mechanistic basis for reconciling laboratory experiments, where metal is freshly amended, to data obtained in the field. The potential of DGT as a surrogate for metal availability to plants is further confirmed by this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call