Abstract
The kinetics of hole transfer in DNA by adenine-hopping mechanism was investigated by the combined pulse radiolysis-laser flash photolysis method. The hole transfer from Ptz*+* to oxG across the (A)n-bridge preceded by the A-hopping mechanism and the weak distance-dependent hole transfer with the rates faster than 108 s-1 over the distance range of 7-22 A was demonstrated. In contrast, hole transfer from oxG*+ to Ptz followed the single-step super exchange mechanism. Thus, two different processes for the hole transfer across the identical (A)n-bridge in DNA have been demonstrated. The results clearly show that the mechanism of hole transfer in DNA strongly depends on the redox nature of the oxidant, whether it produces only G*+ or both A*+ and G*+.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of the American Chemical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.