Abstract
The kinetics of toluene disproportionation has been studied over both unmodified and Si-Mg modified ZSM-5 catalysts using an integral reactor and taking into account the reversibility of the reaction. It has been found that xylene dealkylation is the major secondary reaction, whereas toluene dealkylation can be considered negligible. For the unmodified ZSM-5, heterogeneous models based as the alkyl-transfer mechanism allowed the experimental results to be fit better than first and second pseudohomogeneous models, the best concordance being obtained when toluene adsorption is assumed as the rate-limiting step. The corresponding kinetic equations has been further applied to the modified zeolite (SiMg/ZSM-5), leading to the development of a kinetic model which includes the effect of the toluene and p-xylene intracrystalline diffusion rate and the presence of nonselective acid sites on the external zeolite surface. This model describes adequately the selective formation of p-xylene over modified ZSM-5, reproducing the experimental product distribution with an average relative error of 2.8%
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have