Abstract
The kinetics of the production and loss of CF2 and CF radicals in a glow discharge in pure CF4 is investigated by the laser-induced fluorescence method. The effective rate constants for electron-impact dissociation of CF4 molecules along the pathways toward CF2 and CF radicals are determined within a wide range of the reduced electric field (80–250 Td). It is shown that, along with the direct electron-impact dissociation of CF4, the radicals are also produced via the dissociation of the CxFy polymer fluorocarbon particles that form in the plasma. A detailed analysis of the kinetics of the radical production and loss in a modulated discharge made it possible to evaluate the contribution of the electron-impact dissociation of CF4 to the production of radicals and, consequently, to determine the dissociation rate constants $$k_{CF_2 } $$ and k CF. A comparison of the obtained $$k_{CF_2 } $$ and k CF values with the results of calculations by the Monte Carlo method and the literature data on the cross sections for electron-impact dissociation of CF4 molecules enabled the normalization of these cross sections in the threshold region and the construction of the model cross sections for the electron-impact dissociation of CF4 into neutral products. The calculated cross sections allow a satisfactory description of the experimental results throughout the entire range of E/N under study. A significant scatter (up to 100%) in the experimental data on $$k_{CF_2 } $$ and k CF at low values of E/N is related to the considerable contribution of the CxFy polymer molecules (and, probably, CxF y + ions and fluorocarbon grains) to the production of CF2 and CF radicals both in the plasma volume and on the surface of a fluorocarbon film covering the discharge tube wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.