Abstract

AbstractThe sequence of precipitation and its kinetics in 17–4 PH (precipitation hardening) stainless steel were studied by observing the electrical resistivity and microstructure of the alloy during isothermal aging at various temperatures in the range 320–600°C. By the absence of an incubation period for the onset of precipitation it is shown that there is no free energy barrier to nucleation. The electrical resistivity of the specimen decreased on prolonged aging approaching a steady value asymptotically with time. The alloys aged above 550°C were found to have higher final resistivity values than those aged at lower temperatures. By transmission electron microscopy, local reversion of the martensite to austenite, attributed to enhanced diffusion and concentration of copper atoms at the lath boundaries, was revealed in the specimens aged at temperatures above 550°C. The kinetics of precipitation in the system obeyed the Johnson–Mehl equation. The activation energy Q of the precipitation process was est...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.