Abstract

We study the kinetics of order-disorder and order-order transitions in weakly segregated diblock copolymers using a time-dependent Ginzburg-Landau (TDGL) approach. In particular, we investigate the microstructural change as well as the order-parameter evolution after a sudden temperature jump from one phase to another. Direct numerical simulation of the TDGL equations shows that depending on the extent of the temperature jump, these transitions often occur in several stages and can involve nontrivial intermediate states. For example, we find that transition from the lamellar phase to the hexagonal cylinder phase goes through a perforated lamellar state within a certain temperature range. The numerical results are elucidated by a multimode analysis under the single-wave-number approximation. The analysis reveals that the geometric characteristics of the free energy surface, particularly saddle points and ridgelike features, are responsible for the nontrivial intermediate states on the kinetic pathways. On the basis of this analysis, a generalized kinetic ``phase diagram'' is constructed, which is able to account for all the different scenarios observed in the numerical simulation. Our results are discussed in connection with available experimental observations. In particular, we suggest the possibility that the perforated-modulated lamellar structures obtained by Bates and co-workers [I. W. Hamley, K. A. Koppi, J. H. Rosedale, F. S. Bates, K. Almdal, and K. Mortensen, Macromolecules 26, 5959 (1993); S. Forster, A. K. Khandpur, J. Zhao, F. S. Bates, I. W. Hamley, A. J. Ryan, and W. Bras, Macromolecules 27, 6922 (1994)] may be kinetic, intermediate states rather than new equilibrium phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.