Abstract

The kinetics of phase transitions in the two dimensional Ising model under different conditions is studied using the string method. The key idea is to work in collective variables, consisting of block of spins, which allow for a continuous approximation of the collective variable state-space. The string method computes the minimum free energy path (MFEP) in this collective variable space, which is shown to explain the mechanism of the phase transformation (in particular, an approximation of its committor function, its free energy and its transition state). In this paper the theoretical background of the technique as well as its computational aspects are discussed in details. The string method is then used to analyze phase transition in the Ising model with imposed boundary conditions and in a periodic system under an external field of increasing magnitude. In each case, the mechanism of the phase transformation is elucidated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.