Abstract

The Morgantown Energy Technology Center (METC) of the U.S. Department of Energy (DOE) is actively pursuing the development of reliable and cost-effective processes to clean coal gasifier gases for application to integrated gasification combined cycle (IGCC) and molten carbonate fuel cell (MCFC) power plants. A large portion of gas cleanup research has been directed towards hot gas desulfurization using Zn-based sorbents. However, zinc titanate sorbents undergo reduction to the metal at temperatures approaching 700{degrees}C and lose reactivity because of volatilization. In addition, sulfate formation during regeneration leads to spalling of reactive surfaces. Because of these problems with zinc-based sorbents, METC has shown interest in formulating and testing manganese-based sorbents. Currently, many proposed IGCC processes include a water quench prior to desulfurization. This quench is required for two reasons; limitations in the process hardware (1000{degrees}C), and excessive Zn-based sorbent loss (about 700{degrees}C). With manganese, the water quench is not necessary to avoid sorbent loss, since Mn-based sorbents have been shown to retain reactivity under cyclic testing at 900{degrees}C. This advantage of manganese over zinc has potential to increase thermal efficiency as the trade-off of increasing the equilibrium H{sub 2}S over-pressure obtainable with a manganese sorbent. In the work which is reportedmore » here, lower loading temperatures (as low as 400{degrees}C) are studied. Also formulations containing titania rather then alumina are studied to attempt to improve performance.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call