Abstract
Vascular plant decomposition was followed during two different years in one freshwater and one marine wetland in southeastern Georgia, USA, using a modified litterbag technique. Chemical analysis of plant material revealed different rates of decomposition for different components of the plant material (soluble components, α-cellulose, hemicellulose, and lignin) and, further, that rates of decomposition of each component changed over time, such that the specific rate of decay for each fraction decreased as decomposition proceeded. Three mathematical models which differen in their treatment of the biochemical heterogeneity of vascular plant detritus were investigated with regard to their relative abilities to describe decomposition kinetics from the field incubations as well as from laboratory microcosm studies with radiolabeled plant material. A decaying coefficient model, which treats plant detritus as a single component but allows for a decreasing specific decomposition rate as material ages, was most successful in describing kinetics of decomposition. This model accomodates the changes in quality of vascular plant detritus resulting from preferential decomposition of more labile components (e.g., non-lignocellulosic material and holocellulose) and the relative accumulation of more refractory components (e.g., lignin) observed with time. The model also accomodates the potential transformation of various plant components into more refractory compounds (humification) during the decomposition process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have