Abstract

AbstractIn this research, ammonium chloride was used to calcine Ti-extraction blast furnace slag (EBFS) with the aim of removing iron from it. The influences of calcination temperature, ammonium chloride to EBFS mass ratio and particle size on the rates of iron removal were investigated. The results show that the rate of iron removal increased to almost 100% with increases in calcination temperature and the NH4Cl to EBFS mass ratio, but decreased with increases in particle size. Iron is removed in the form of ferric chloride gas, and ammonium chloride can be recycled by recrystallization after decomposition. The bagdasarrym model was used to describe the calcination process at temperatures below 261°C, which was controlled by nonisothermal crystallization. The reaction kinetic equation was obtained and the apparent activation energy of 67.21 kJ/mol. Ferric chloride reaction product existed in the calcined slag in an amorphous solid state. The shrinking core model was used to describe the calcination process at temperatures above 261°C, which was controlled by surface chemical reactions. The reaction kinetic equation was obtained and the apparent activation energy was found to be 42.05 kJ/mol.

Highlights

  • In this research, ammonium chloride was used to calcine Ti-extraction blast furnace slag (EBFS) with the aim of removing iron from it

  • A certain amount of ammonium chloride was put into a 10 g EBFS sample and stirred in a 100 mL ceramic crucible, which was placed in the furnace

  • There are some amorphous substances in EBFS, the chemical bond in amorphous compounds is easier to break and synthesize than that in the crystal of the same substance

Read more

Summary

Introduction

Abstract: In this research, ammonium chloride was used to calcine Ti-extraction blast furnace slag (EBFS) with the aim of removing iron from it. The influences of calcination temperature, ammonium chloride to EBFS mass ratio and particle size on the rates of iron removal were investigated. The results show that the rate of iron removal increased to almost 100% with increases in calcination temperature and the NH4Cl to EBFS mass ratio, but decreased with increases in particle size. The bagdasarrym model was used to describe the calcination process at temperatures below 261°C, which was controlled by nonisothermal crystallization. Ferric chloride reaction product existed in the calcined slag in an amorphous solid state. The shrinking core model was used to describe the calcination process at temperatures above 261°C, which was controlled by surface chemical reactions. The reaction kinetic equation was obtained and the apparent activation energy was found to be 42.05 kJ/mol

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.