Abstract

The nucleation mechanism of water (heterogeneous/homogeneous) can be regulated by confinement within nanoporous alumina. The kinetics of ice nucleation is studied in confinement by employing dielectric permittivity as a probe. Both heterogeneous and homogeneous nucleation, obtained at low and high undercooling, respectively, are stochastic in nature. The temperature interval of metastability extends over ∼4 and 0.4 °C for heterogeneous and homogeneous nucleation, respectively. Nucleation within a pore is spread to all pores in the template. We have examined a possible coupling of all pores through a heat wave and a sound wave, with the latter being a more realistic scenario. In addition, dielectric spectroscopy indicates that prior to crystallization undercooled water molecules relax with an activation energy of ∼50 kJ/mol, and this process acts as precursor to ice nucleation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call