Abstract

Hydrolysis is a reaction to produce sugars from lignocellulosic raw materials for biochemical production. The present study elucidates the hydrolysis of cellulose and formation of glucose decomposition products catalyzed by 5% to 20% (w/w) formic acid at 180 to 220 °C with an initial cellulose concentration of 10 to 100 g/L. Microcrystalline cellulose was used as a model compound. The experimental findings indicated that cellulose hydrolysis follows first-order kinetics in formic acid. A side reaction from cellulose to non-glucose products was required to explain the experimental results. A kinetic model was developed for the hydrolysis of microcrystalline cellulose in formic acid, based on a rate constant expression in accordance with the specific acid catalysis. The model showed good agreement with the experimental data. This study demonstrates how kinetic parameters can be fitted in a case-specific manner for the hydrolysis part of the kinetic model, while the well-established glucose decomposition model is utilized directly from literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.