Abstract

Edivoxetine (LY2216684 HCl), although a chemically stable drug substance, has shown the tendency to degrade in the presence of carbohydrates that are commonly used tablet excipients, especially at high excipient:drug ratios. The major degradation product has been identified as N-formyl edivoxetine. Experimental evidence including solution and solid-state investigations, is consistent with the N-formylation degradation pathway resulting from a direct reaction of edivoxetine with (1) formic acid (generated from decomposition of microcrystalline cellulose or residual glucose) and (2) the reducing sugar ends (aldehydic carbons) of either residual glucose or the microcrystalline cellulose polymer. Results of labeling experiments indicate that the primary source of the formyl group is the C1 position from reducing sugars. Presence of water or moisture accelerates this degradation pathway. Investigations in solid and solution states support that the glucose Amadori Rearrangement Product does not appear to be a direct intermediate leading to N-formyl degradation of edivoxetine, and oxygen does not appear to play a significant role. Solution-phase studies, developed to rapidly assess propensity of amines toward Maillard reactivity and formylation, were extended to show comparative behavior with example systems. The cyclic amine systems, such as edivoxetine, showed the highest propensity toward these side reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.