Abstract
A kinetic model of the doping processes in molecular beam epitaxy is developed. The dopant incorporation into the growing crystal is assumed to occur via both blocking dopant atoms at the kink positions by the host atoms and atomic exchange between dopant adatoms and atoms of the topmost crystalline layer. The dopant surface segregation is treated as accumulation of dopant atoms in energetically favorable adsorption positions on the surface. Two segregation pathways are considered: climbing of dopant adatoms over moving steps and jumping of the dopants out of the topmost crystalline layer. It is shown that increasing supersaturation in the adlayer, e.g. with decreasing temperature or increasing growth rate, leads to more efficient blocking of the dopant atoms and, as a consequence, to the decreasing surface segregation. The supersaturation is partially reduced with appearance of 2D islands on the terraces and creation of kinks at the 2D island edges. This results in weaker growth rate and temperature dependences of the surface segregation ratio. Very strong (superexponential) dependence of the surface segregation ratio on the growth temperature is possible under the condition of the intensive jumping of the dopants out of the topmost crystalline layer. The reason is that the probability of «immurement» of the dopant atoms by the moving step depends exponentially on the jumping-out rate constant. The model reproduces experimentally observed segregation behavior of Sb on Si(100).
Highlights
Благодаря характерным для молекулярно−лучевой эпитаксии (МЛЭ) низким температурам кристаллизации, позволяющим исключить десорбцию и диффузию примеси в объеме кристалла, и относительной простоте варьирования потоков основных и примесных атомов имеется принципиальная возможность получения сверхрезких концентрационных профилей легирования и δ−легированных слоев [1, 2]
Если kdes
В. Захват примеси при движении элементарной ступени / В
Summary
Предложена модель захвата и поверхностной сегрегации примеси при легировании в условиях молекулярно− лучевой эпитаксии. Повышение температуры в области средних температур, когда kdex ∼ F, приводит к резкому уменьшению вероятности сохранения примеси в поверхностном слое и, следовательно, к резкому увеличению ширины ПКО при условии, что второе слагаемое(в числителе) в правой части выражения (4) превосходит как константу скорости десорбции, так и третье слагаемое. Если kdes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.