Abstract

One of the distinguishing features of mechanochemical treatment is crystallite size reduction. The crystallite size of the powder subjected to milling decreases to some minimal value characteristic for the given material. Two processes occur concurrently during milling: reduction of the crystallite size and grain growth, whereby the steady-state crystallite size is attained when the rates of these processes are in equilibrium. This study deals with the kinetics of crystallite size evolution by milling. Published experimental data were analyzed using three kinetic models: dr / dt=-k1r2 + k2r-1; dr / dt=-k1r3 + k2r and dr / dt=-nktn-1(r - rs), where r and rs are the crystallite radius and steady-state crystallite radius respectively, t time, k1 and k2 the rate constants of crystallite reduction and grain growth, respectively, k the rate constant and n the Avrami exponent. The applied kinetic relations describe the crystallite size dependence on milling time in a satisfactory manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.