Abstract

Little quantitative information exists on the kinetics of charged antibiotic penetration into human intervertebral discs (IVD). This information is crucial for determining the dosage to use, timing of administration, and duration of treatment for infected IVDs. The objective of this study was to quantitatively analyze the transport of various charged antibiotics into human lumbar IVDs. Penetration of charged and uncharged antibiotics into a human lumbar disc was analyzed using a 3D finite element model. The valence (z) of the electrical charge of antibiotics varied from z=+2 (positively charged) to z=−2 (negatively charged). An uncharged antibiotic (z=0) was used as a control. Cases with intravenous (IV) administrations of different charged antibiotics were simulated. Our results showed that the electrical charge had great effects on kinetics of an antibiotic penetration into the IVD; with higher concentrations and uptakes for positively charged antibiotics than those for negatively charged ones. This study provides quantitative information on selecting antibiotics for treating intervertebral disc infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.