Abstract

The kinetics of charge carriers in bilateral macroporous silicon with macroporous layers of equal thicknesses is calculated by the finite difference method. A diffusion equation for a monocrystalline substrate and macroporous layers is solved. The boundary conditions are defined at the boundaries between the monocrystalline substrate and the macroporous silicon layers on both sides. Stationary distribution of excess charge carriers in the bilateral macroporous silicon with the macroporous layers of equal thicknesses calculated by the finite difference method is set as the initial condition. Under stationary conditions, excess charge carriers are generated by light with the wavelengths of 0.95 µm and 1.05 µm. It is shown that at the counting times much longer than the relaxation time, all the distributions of the concentration of excess minority carriers generated by light with any wavelength approach the same distribution with exponentially decreasing value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call