Abstract

Dissipative particle dynamics simulation is employed to study the chain exchange kinetics between micelles of diblock copolymer in aqueous solution via in silico hybridization method. One focus is placed on the effect of chain flexibility on the dynamic behavior by varying the spring constant in the bead‐spring model. The length ratio of hydrophilic to hydrophobic block is also varied. It is found that chain expulsion/insertion is the dominant mechanism in the chain exchange process. The most interesting finding is the multimodal relaxation behavior for the chain exchange and expulsion when the spring constant is small or the length ratio of hydrophilic to hydrophobic block is large. This phenomenon is due to an increase in size polydispersity of micelles with rising population of small aggregates/micelles, for which the exchange kinetics is faster. Micelles with larger aggregation numbers (>10) are found to follow single exponential relaxation kinetics. image

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call