Abstract

In the present study, the isothermal decomposition of austenite to bainite in 1.0 wt% carbon, 0.21% silicon steel during the partitioning step of a quenching and partitioning (Q&P) heat treatment has been investigated in a dilatometer in the temperature range of 200 to 350 °C and compared to conventional austempering heat treatment. The bainite transformation was shortened by about 75% in the presence of pre-existing martensite (QP). The kinetics of bainite transformation is described by the well-known Avrami equation. The calculated parameter ‘n’ in the Avrami equation shows that bainite forms in the absence of pre-existing martensite (TT) at a constant nucleate rate, while in the presence of pre-existing martensite, nucleation is interface controlled. The overall bainite transformation activation energy, calculated by the Avrami equation, ranges from 64 to 110 kJ/mol. The outcomes of this investigation provide guidelines for the development of multiphase microstructures, including pre-existing martensite and bainite in high-carbon low-silicon steel, within an industrially acceptable time scale and mechanical performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.