Abstract

Brominated flame retardants are of concern to our environment because of its endocrine disruptive, immune toxicant characteristics, and toxic brominated byproducts. As a potential remediation technology, debromination of tetrabromobisphenol A (TBBPA) from both aqua and soil by Cu coated nano zero-valent iron particles (Cu-nZVI) was investigated. Because of its catalytic reductive properties, Cu-nZVI has a potential for removing TBBPA. Batch experiments show that Cu-nZVI effectively debrominated TBBPA into tri-, di-, mono-bromobisphenol A, and bisphenol A (BPA) with a low suspension density (0.5 g L−1). As indicated by the low apparent activation energy (69.66 kJ mol−1), the optimal reaction condition was the Cu loading of 0.5 wt%, 27 °C and pH 5.0. Tetrabromobisphenol A (10 mg L−1) was transformed into several reaction products within 120 min, and BPA was detected as a major reaction product after 240 min. The reaction rate constant (kobs) was proportionally correlated to solid-solution ratio and temperature. The concentration of metals during the debromination was too low (less than 0.13 mg L−1) to induce an adverse effect on the ecosystem. During the redox reaction, a new mineral, magnetite formed on particles’ surface accompanied by the oxidation of Fe0 and the elevation of pH. This study suggests that Cu-nZVI has the potential to be explored for the rapid and complete debromination of brominated flame retardants in both aquatic and edaphic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.