Abstract

Reactions of ozone with Br(-), SO(3)(2-), HSO(3)(-), I(-), and NO(2)(-), studied by stopped-flow and pulsed-accelerated-flow techniques, are first order in the concentration of O(3)(aq) and first order in the concentration of each anion. The rate constants increase by a factor of 5 x 10(6) as the nucleophilicities of the anions increase from Br(-) to SO(3)(2-). Ozone adducts with the nucleophiles are proposed as steady-state intermediates prior to oxygen atom transfer with release of O(2). Ab initio calculations show possible structures for the intermediates. The reaction between Br(-) and O(3) is accelerated by H(+) but exhibits a kinetic saturation effect as the acidity increases. The kinetics indicate formation of BrOOO(-) as a steady-state intermediate with an acid-assisted step to give BrOH and O(2). Temperature dependencies of the reactions of Br(-) and HSO(3)(-) with O(3) in acidic solutions are determined from 1 to 25 degrees C. These kinetics are important in studies of annual ozone depletion in the Arctic troposphere at polar sunrise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.