Abstract

Thermal analysis of barium titanyl oxalate reveals that the decomposition proceeds through four distinct rate processes. Among them, the decomposition of oxalate occurs in the temperature range 230–350°C, and has been studied by TG and gas pressure measurements, supplemented by IR spectroscopy, electron microscopy and chemical analysis. Oxalate decomposition proceeds differently in vacuum and in flowing gas atmospheres. Analytical results indicate the formation of a complex carbonate together with CO, CO2 and water vapour below 400°C. Schemes for each type of decomposition are proposed and discussed. For decomposition in vacuum, kinetic observations fitted the three-dimensional, diffusion controlled, rate equation for almost the entire α-range (0.028≤α≤0.92). The activation energy is calculated to be3 189±6 kJ mol−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call