Abstract

The reaction of (diaqua)(N,N′-ethylene-bis(salicylidiniminato)manganese(III) with aqueous sulphite buffer results in the formation of the corresponding mono sulphito complex, [Mn(Salen)(SO3)]− (S-bonded isomer) via three distinct paths: (i) Mn(Salen)(OH2)2+ + HSO3− → (k1); (ii) Mn(Salen)(OH2)2+ + SO32− → (k2); (III) Mn(Salen)(OH2)(OH) + SO32− → (k3) in the stopped flow time scale. The fact that the mono sulphito complex does not undergo further anation with SO32−/HSO3− may be attributed to the strong trans-activating influence of the S-bonded sulphite. The values of the rate constants (10−2ki/dm2 mol−1 s−1 at 25°C, I = 0.3 mol dm−3), ΔHi#/kJ mol−1 and ΔSi#/J K−1 mol−1 respectively are: 2.97 ± 0.27, 42.4 ± 0.2, −55.3 ± 0.6 (i = 1); 11.0 ± 0.8, 33 ± 3, −75 ± 10 (i = 2); 20.6 ± 1.9, 32.4 ± 0.2, −72.9 ± 0.6 (i = 3). The trend in reactivity (k2 > k1), a small labilizing effect of the coordinated hydroxo group (k3/k2 < 2), and substantially low values of ΔS# suggest that the mechanism of aqua ligand substitution of the diaqua, and aqua-hydroxo complexes is most likely associative interchange (Ia). No evidence for the formation of the O-bonded sulphito complex and the ligand isomerization in the sulphito complex, (MnIII-OSO2 → MnIII-SO3), ensures the selectivity of the MnIII centre toward the S-end of the SIV species. The monosulphito complex further undergoes slow redox reaction in the presence of excess sulphite to produce MnII, S2O62− and SO42−. The formation of dithionate is a consequence of the fast dimerization of the SO3−. generated in the rate determining step and also SO42− formation is attributed to the fast scavenging of the SO3−. by the MnIII species via a redox path. The internal reduction of the MnIII centre in the monosulphito complex is insignificant. The redox reaction of the monosulphitomanganese(III) complex operates via two major paths, one involving HSO3− and the other SO32−. The electron transfer is believed to be outersphere type. The substantially negative values of activation entropies (ΔS# = −(1.3 ± 0.2) × 102 and −(1.6 ± 0.2) × 102 J K−1 mol−1 for the paths involving HSO3− and SO32− respectively) reflect a considerable degree of ordering of the reactants in the act of electron transfer. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 627–635, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call