Abstract

The processes occurring in the X-irradiated C2H2/Kr and HCl/Kr systems in the temperature range of 7–30 K were studied using a combination of FTIR and EPR spectroscopy. In both cases, irradiation results in effective decomposition of isolated molecules (C2H2 or HCl) and production of trapped H atoms. The thermal decay of trapped atoms in solid krypton was attributed to “local” reactions (below 21 K) and long-range mobility activated in the temperature range of 23–27 K. Two krypton hydrides, HKrCCH and HKrCl, were synthesized from the radiation-induced hydrogen atoms. In the case of C2H2/Kr system, competitive reaction channels of H atoms at various absorbed doses were investigated in details, and HKrCCH was found to be one of the main reaction products. The X-ray radiolysis in krypton matrices was concluded to be a promising method to obtain krypton hydrides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call