Abstract

AbstractThe emulsifier‐free emulsion polymerizations of styrene in the presence of about 1 wt% (related to styrene) of the water soluble comonomer, sodium methallyl sulfonate (NaMS), which has short hydrophobic group and strong hydrophilic ionic group, and of the initiator, potassium persulfate, are carried out. Under constant ionic strength, the number density of polymer particles (Np) is found to depend on 0.5‐power of the initiator concentration and shows a minimum in the comonomer concentration plot. Under constant concentration of monomer, comonomer and initiator, Np is found to depend on −1.1‐power of the ionic strength. In the earlier period, the presence of styrene oligomer having MW about 1000 and water soluble poly(NaMS) or copolymer with high NaMS content suggests a micellar nucleation mechanism, by which the styrene oligomer behaves as emulsifier and the poly(NaMS) can either stabilize or destabilize the existing particles, depending on its concentration in the aqueous phase. The particle size is rather uniform having an uniformity very close to 1 (ca. 1.001) throughout the entire process. It is much larger than that of the conventional emulsion polymerization or emulsifier‐free emulsion polymerization with the other comonomers by about 3 to 4 times in diameter or 27 to 64 times in volume, leading to that the average radical number in the particle could be much greater than 0.5. The (conversion)2/3 versus time plot is found to be linear from 6 to 50% conversion. During this period, for the conversion from 10 to 40% the polymerization rate increases twice but the particle volume increases four‐fold. In addition, MWD shows bimodal (excluding the styrene oligomer peak in the earlier period) during the growth period. But the lower MW peak shifts to higher MW and become larger, while the higher MW peak decreases, and finally the MWD becomes single mode after 58.6% conversion. These results suggest a “gradient polymerization” or “transition stage to core‐shell structure” in the earlier stage of particle growth and a “shell part polymerization” in the later stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call