Abstract

Supercritical hydrothermal combustion is a novel, clean, and efficient combustion method. In this work, a mechanism-based kinetic model of ethanol appropriate for high-pressure hydrothermal environment was developed. Combined with theoretical analysis and continuous ignition experiments, the transient ignition process, ignition temperature, and extinction temperature were discussed. A turbulent combustion model coupling detailed kinetics was constructed to analyze the co-flow diffusion hydrothermal flame. It was found that the ethanol kinetic model can well predict the reaction process, critical ignition temperatures, extinction temperatures, and diffusion combustion process of hydrothermal combustion. The ignition temperatures of 2.40–5.72 wt% ethanol ranged between 500–390 °C, and OH was a significant ignition indicator. As an auxiliary fuel, ethanol is superior to methanol. During co-flow hydrothermal combustion, the interfacial reaction between fuel and oxidant in jet core area had an important influence, and the local high-temperature flame was mainly distributed near the downstream of fuel jet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call