Abstract

The solution chemistry of complex [Co{(Me)2(μ-ET)cyclen}(H2O)2](3+) containing a fully substituted tetraammine ligand designed for the avoidance of base-conjugated substitution mechanisms in the 6-8 pH range has been studied. The study should shed some light on the possible involvement of such Co(III) skeleton in inert interactions with biomolecules. The reactivity and speciation of the complex has been found similar to that of the parent cyclen derivative with the presence of mono- and bis-hydroxo-bridged species; at pH < 7.1, all reactivity has been found to be related to the aqua/hydroxo monomeric complexes. Under these pH conditions, the substitution reactions of the aqua/hydroxo ligands by chloride, inorganic phosphate, thymidine, cytidine 5'-monophosphate (5'-CMP), and thymidine-5'-monophosphate (5'-TMP) have been studied at varying conditions; ionic strength has been kept at 1.0 NaClO4 due to the high concentration of 2-(N-morpholino)ethanesulfonic acid (MES) or N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) used to ensure buffering. Except for chloride, the process occurs neatly in a one or two step process, showing dissociatively activated substitution mechanisms, having in general large ΔH(⧧), positive ΔS(⧧), and values of ΔV(⧧) close to those corresponding to the liberation of an aqua ligand to the reaction medium. The actuation of noticeable encounter-complex formation equilibrium constants has been found to be the determinant for the reactions with nucleosides and nucleotides, a clear indication of the relevance of hydrogen-bonding interactions in the reactivity of these molecules, even in this highly ionic strength medium. For the substitution of the active aqua/hydroxo ligands with 5'-TMP, the first substitution reaction produces an Nthymine-bound 5'-TMP complex that evolves to a bis-5'-TMP with an Nthymine,Ophosphate-bonding structure. The formation of outer-sphere complexes between the dangling phosphate group of the Nthymine-bound 5'-TMP and the thymine moiety of another entering 5'-TMP has been found to be responsible for this fact, which leaves only the phosphate group for coordination available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.