Abstract

This study investigates the structural stability of small Pd@Pt core@shell octahedral nanoparticles (NPs) and their shell thickness dependent catalytic performance for p-chloronitrobenzene hydrogenation with H2. The 6–8 nm Pd@Pt octahedral NPs are prepared by a sequential reduction method, and the characterization results confirm that Pd@Pt octahedral NPs with one to four atomic Pt layers can be controllably synthesized. The Pd@Pt octahedral NPs with one atomic Pt layer demonstrate excellent structural stability with the maintenance of core–shell structures as well as high catalytic stability during cycle to cycle catalytic p-chloronitrobenzene hydrogenation reactions. The alumina-supported Pd@Pt octahedral NPs illustrate a superior catalytic performance relative to individual Pt and Pd and their physical mixtures. Theoretical calculations by density functional theory suggest that the unexpected structural stability for Pd@Pt octahedral NPs with thin Pt shells and their corresponding catalytic stability d...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call