Abstract

In this study, a dinitrodiphenyldiquinoline derivative is synthesized, purified, and characterized, and its adsorptive ability is examined for the first time. Twelve common polycyclic aromatic hydrocarbons are chosen as potential adsorbates for removal by using dinitrodiphenyldiquinoline as an adsorbent surface. The adsorptive capacity and the efficiency of removal depend on several variables such as adsorbent dose, polycyclic aromatic hydrocarbon initial concentration, pH, and contact time. This paper summarizes the adsorbent parameters and the kinetic models that can optimize and describe the adsorption process used to treat aqueous solutions of polycyclic aromatic hydrocarbons. Experimentally, the optimum adsorbent dose, the initial concentration, and contact time are found to be 0.1 g, 1 ppm, and 60 min, respectively. Mathematical treatment of the adsorption data reveals that the adsorption of all the polycyclic aromatic hydrocarbons by dinitrodiphenyldiquinoline adopted a pseudo second-order adsorption model. As a result, the dinitrodiphenyldiquinoline derivative is found to be a very good adsorbent surface for several hazardous organic pollutants such as polycyclic aromatic hydrocarbons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call