Abstract
The electrochemical reduction of oxygen on lanthanum manganite (LSM) electrodes has been investigated by cyclic voltammetry, alternating current (ac) impedance, and, in particular, potential step. An emphasis was given to the study of the kinetics of the formation of oxygen vacancy, which is shown to be the main cause for the reversed hysteresis in cyclic voltammograms and for the increase in the electrochemical activity of oxygen reduction on the cathodically polarized LSM electrode observed in both ac impedance and in potential step experiments. The potential step experiments show that the oxygen vacancy concentration increases exponentially with time when the LSM is under a cathodic polarization. In the present study, the rate controlling step for the formation of oxygen vacancies is the oxygen vacancy generation step. The cathodic current rising from the reaction on oxygen vacancies can make a significant contribution to the total reduction current.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have