Abstract

AbstractReal time ultraviolet (RTUV) spectroscopy was used to study the photolysis kinetics of a radical‐type morpholino initiator, during the polymerization of a multiacrylate monomer exposed to UV radiation in bulk, in solution, in a polyurethane‐acrylate resin, and in a poly(methyl methacrylate) matrix. The photolysis rate constant k was determined from the exponential loss profile recorded; it was found to vary between 0.1 and 3s−1, depending on the light intensity and on the monomer concentration. The quenching of the photoinitiator excited states by the acrylate monomer was shown to be an important deactivation pathway which substantially reduces the rate of initiation. The observed influence of the film thickness and photoinitiator concentration on the k value were accounted for by the internal filter effect. Conversion versus time curves were recorded by real time infrared (RTIR) spectroscopy for the various systems examined, thus allowing a direct comparison of both the actual polymerization rate and the residual unsaturation content of the cured polymer. Various factors were shown to be responsible for the early stop of the polymerization, such as depletion of the photoinitiator, O2 inhibition, or vitrification of the polymer. The photoinitiated cationic ring‐opening polymerization of a cycloaliphatic diepoxy monomer was also studied in real time by RTUV and RTIR spectroscopy. Despite a very fast photolysis of the triarylsulphonium initiator, the polymerization of the epoxy monomer developed less rapidly than for the acrylic monomer, with shorter kinetic chain lengths. A linear relationship was found to exist between the decay rate constant and the light intensity, for both the radical and the cationic photoinitiators, as expected for a direct photolysis process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call