Abstract

AbstractHighly crosslinked polymers can be readily synthesized by photoinitiated polymerization of multifunctional monomers or functionalized polymers. The reaction can be followed in situ by real‐time infrared (RT‐IR) spectroscopy, a technique that records conversion versus time curves in photosensitive resins undergoing ultrafast polymerization upon UV exposure. For acrylate‐based resins, UV‐curing proceeds with long kinetic chains (7700 mol/radical) in spite of the high initiation rate. RT‐IR spectroscopy proved very valuable in assessing the influence of various parameters, such as initiation efficiency, chemical structure of the telechelic oligomer, light intensity, inhibitory effect of oxygen, on polymerization kinetics. Interpenetrating polymer networks can be rapidly synthesized by means of UV irradiation of a mixture of difunctional acrylate and epoxy monomers in the presence of both radical and cationic‐type photoinitiators. The same UV technology can be applied to crosslink solid polymers at ambient temperature, which bear different types of reactive groups (acrylate and vinyl double bonds, epoxy ring). UV radiation curing has been successfully used to produce within seconds weathering resistant protective coatings, high‐resolution relief images, glass laminates and nanocomposites materials.Photoinitiated crosslinking polymerization.magnified imagePhotoinitiated crosslinking polymerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.