Abstract

A kinetic analysis of a substrate cycle in which one of the two steps was substituted by a chemical reaction has been made. The model is illustrated by the amplified determination, in a continuous assay, of phenolic compounds at low concentrations using the enzyme tyrosinase and β-NADH to reduce the o-quinone product of catalytic activity. Progress curves corresponding to β-NADH disappearance were not linear and followed first-order kinetics. Knowledge of the kinetics of the reaction has allowed us to achieve detection limits as low as 50 nM in a simple 10-min assay. There is no analytical solution to the non-linear differential equation system that describes the kinetics of the reaction, therefore, computer simulations of its dynamic behaviour are also presented, good agreement with the experimental results being obtained. The method is applicable to the measurement of any other metabolite, and its amplification capacity as well as the simplicity of determining kinetic parameters enable it to be implemented in a bioreactor for automation purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.