Abstract

Kinetic studies have been undertaken to elucidate the mechanism of the allosteric inhibition by tyrosine of the prephenate dehydrogenase activity of the bifunctional dimeric enzyme chorismate mutase-prephenate dehydrogenase. The effect of tyrosine on the initial velocity of the reactions in the presence of both prephenate and the alternative substrate, 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate, have been determined. In addition, investigations have been made of the effect of tyrosine on the inhibition of the reaction by the inhibitory analogues of prephenate, (4-hydroxyphenyl)pyruvate, and (carboxyethyl)-1,4-dihydrobenzoate. The results of the double inhibition experiments indicate clearly that the enzyme possesses a distinct allosteric site for the binding of tyrosine. The initial velocity data obtained with both substrates have been fitted to the rate equations that describe a wide range of models. From a comparison of the results obtained from studies with the two substrates, and with a knowledge of the value for the dissociation constant of the tyrosine-enzyme complex, definitive conclusions have been reached about the mechanism of the allosteric inhibition. It is concluded that tyrosine combines twice at allosteric sites and in an antisynergistic fashion, while prephenate reacts at both active sites of the dimeric enzyme as well as weakly at one of the allosteric sites. It appears that the latter is simple competition reaction that affects neither the binding of prephenate at the active site nor the rate of product formation. The model also predicts the formation of an active tyrosine-enzyme-prephenate complex that yields product at a much slower rate than does the enzyme-prephenate complex.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.