Abstract
Basement membranes (BM) are specialized extracellular matrices underlying endothelial cells in the artery wall. Laminin, the most abundant BM glycoprotein, is a structural and biologically active component. Peroxynitrous acid (ONOOH), a potent oxidizing and nitrating agent, is formed in vivo at sites of inflammation from superoxide and nitric oxide radicals. Considerable data supports ONOOH formation in human atherosclerotic lesions, and an involvement of this oxidant in atherosclerosis development and lesion rupture. These effects may be mediated, at least in part, via extracellular matrix damage. In this study we demonstrate co-localization of 3-nitrotyrosine (a product of tyrosine damage by ONOOH) and laminin in human atherosclerotic lesions. ONOOH-induced damage to BM was characterized for isolated murine BM, and purified murine laminin-111. Exposure of laminin-111 to ONOOH resulted in dose-dependent loss of protein tyrosine and tryptophan residues, and formation of 3-nitrotyrosine, 6-nitrotryptophan and the cross-linked material di-tyrosine, as detected by amino acid analysis and Western blotting. These changes were accompanied by protein aggregation and fragmentation as detected by SDS-PAGE. Endothelial cell adhesion to isolated laminin-111 exposed to 10 μM or higher levels of ONOOH was significantly decreased (~25%) compared to untreated controls. These data indicate that laminin is oxidized by equimolar or greater concentrations of ONOOH, with this resulting in structural and functional changes. These modifications, and resulting compromised cell-matrix interactions, may contribute to endothelial cell dysfunction, a weakening of the structure of atherosclerotic lesions, and an increased propensity to rupture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.