Abstract

SummaryThe relative contribution of the two phagosomal catabolic processes, oxidative and metabolic, was assessed in the killing of Pseudomonas aeruginosa in phagosomes of alveolar macrophages (AMs) from wild-type (p47-phox+/+) or NOX-defective (p47-phox−/−) mice. Free radical release and degradative acidification within AM phagosomes is sequential and separable. The initial NOX activity, identifiable as a transient alkalinization, leads to fast bacterial wall permeabilization by ROS. This is followed by V-ATPase-induced acidification and enzymatic bacterial degradation contributed through phagosomal-lysosomal fusion. The alkalinization/acidification ratio was variable among phagosomes within single cells of a given genotype and not as a function of macrophage M1 or M2 classification, possibly owing to uneven distribution of phagosomal transporter proteins. Irregular, excessive NOX activity prevents phago-lysosomal fusion, and the lack of V-ATPase-induced acidification leads to bacterial stasis in the phagosome. Thus, efficient phagosomal bacterial killing is a result of tightly balanced activity between two processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call