Abstract

We discuss utilization of kinetic schemes for description of open interacting systems, focusing on vibrational energy relaxation for an oscillator coupled to a nonequilibirum electronic bath. Standard kinetic equations with constant rate coefficients are obtained under the assumption of time scale separation between the system and bath, with the bath dynamics much faster than that of the system of interest. This assumption may break down in certain limits, and we show that ignoring this may lead to qualitatively wrong predictions. Connection with more general, nonequilibrium Green's function (NEGF) analysis is demonstrated. Our considerations are illustrated within generic molecular junction models with electron-vibration coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.