Abstract

Experimental and kinetic analysis of a chemical system combines autocatalytic amplification of 2-alkynyl-5-pyrimidyl alkanol 2 and 6-alkynyl-3-pyridyl akanol 4 in which 2 acts as a chiral trigger and 4 being the subsequent autocatalyst. Starting from a very low initial ee, both alkanols are produced with high enantiopurity in one single cycle. This provides insight into a dual nonlinear amplification of chirality observed with amplifying trigger 2 and accelerated amplification of autocatalyst 4. These kinetic studies reveal a five-fold magnitude superior amplification rates of 4 associated with trigger's enantiopurity at the outset.

Highlights

  • Experimental and kinetic analysis of a chemical system combines autocatalytic amplification of 2-alkynyl-5-pyrimidyl alkanol 2 and 6-alkynyl-3-pyridyl akanol 4 in which 2 acts as a chiral trigger and 4 being the subsequent autocatalyst

  • We report on kinetic investigations of the combined autocatalytic amplification of 2 and 4 in a single chemical system

  • This provides insight into a dual nonlinear amplification of chirality observed with amplifying trigger 2 and immediately propagated with higher rate to autocatalyst 4

Read more

Summary

Introduction

Experimental and kinetic analysis of a chemical system combines autocatalytic amplification of 2-alkynyl-5-pyrimidyl alkanol 2 and 6-alkynyl-3-pyridyl akanol 4 in which 2 acts as a chiral trigger and 4 being the subsequent autocatalyst. Experimental studies by kinetic measurements and NMR spectroscopy provided support for the contribution of higher oligomer species.[15] Besides, computational analysis provided a rational for other possible species such as trimers and tetramers, which must dissociate to recover the dimeric catalyst and propagate chirality.[16] Tetramers in ground state were recently shown to have inverse temperature dependence on reaction rate and induction period to release the active catalyst.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.