Abstract

AbstractOlefin metathesis catalysts like AquaMet are vulnerable to different decomposition pathways under biologically relevant conditions. Currently, stabilizing strategies are focused on approaches with limited relevance for application under biologically relevant conditions. Initial attempts to stabilise AquaMet by encapsulation within a supramolecular metallocage showed that the nitrate counterions of the cage improve the activity of the catalyst. We show that the chloride ligands of AquaMet can be replaced with nitrates by simple anion‐exchange. Catalytic studies into metathesis of a diallyl substrate showed that the presence of nitrate generates higher yields of the ring‐closed product compared to AquaMet alone, under aqueous and biological conditions. Kinetic studies support that the nitrate‐containing catalyst both initiates faster and performs catalysis at a much faster rate than AquaMet, while the rate of catalyst deactivation was similar. This new strategy of kinetic protection of a transition metal catalyst may have future applications for other catalytic reactions applied in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.