Abstract

The 13 S and 21 S dynein ATPases from Tetrahymena cilia rebind to extracted doublet microtubules as inner row and outer row arms. Rebinding is accompanied by four- to ninefold activation of the ATPase activity. The soluble (microtubule-free) forms of the two dyneins exhibit simple saturation kinetics (h = 1.0) with Vmax much less than mumol Pi mg-1 min-1 and Km = 20-40 microM-ATP. Mixing a fixed quantity of free dynein with increasing concentrations of extracted doublets results in systematic increases in all three kinetic parameters for each dynein. At infinite concentrations of doublets and ATP, each enzyme undergoes a significant shift to sigmoid saturation kinetics (h = 2-3), Vmax increases to a turnover rate of about 90 mol ATP per mol Es-1 and the Michaelis constant increases to much greater than 100 microM-ATP. These data suggest that both enzymes are allosteric and can be interpreted in terms of positive cooperativity relative to a minimum of two or three interacting sites. It is less clear whether this cooperativity is related to subunit interactions within the 21 S or 13 S particles, or to subunit interactions between adjacent particles (arms) on the microtubule lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.