Abstract

Ciliary axonemes from Tetrahymena contain a second salt-extractable ATPase distinguishable from outer arm 21 S dynein by sedimentation velocity (congruent to 13 S), electrophoretic mobility and substrate specificity. As characterized by turbidimetric assay, gel electrophoresis in the presence of sodium dodecyl sulphate, ATPase activity and electron microscopy, the 13 S dynein ATPase rebinds to extracted doublet microtubules. Compared to structural-side (ATP-insensitive) 21 S dynein binding, which is moderately specific for the 24 nm outer row arm position, rebinding of 13 S dynein is highly specific but for the inner row arm position. However, 13 S dynein rebinds to the A subfibre with a spacing that coincides with the triplet spacing of the radial spokes (24-32-40 nm periods; 96 nm repeat). All of the major protein components present in the 13 S or 21 S fractions rebind to extracted doublets under conditions that both restore and activate dynein ATPase activity. Unlike active-side (ATP-sensitive) rebound 21 S dynein, rebound 13 S dynein is completely insensitive to dissociation by ATP-vanadate and does not independently decorate the B subfibre. The saturation profile for rebinding of 13 S dynein exhibits a lack of cooperativity between binding events (h = 1.0) similar to structural-side rebinding of 21 S dynein. At low 21 S/doublet stoichiometry there is no measureable competition between the 13 S and 21 S dyneins for binding sites on the A subfibre lattice, although at saturating concentrations of 21 S dynein, rebinding of 13 S dynein is blocked completely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.