Abstract

Multiple sclerosis [MS], a demyelinating disease of the central nervous system associated with inflammation and gliosis, may be an autoimmune disease with T lymphocytes and autoantibodies to myelin protein(s). This study deals exclusively with B cell autoimmunity to myelin basic protein (MBP). T lymphocytes and anti-MBP share a common MBP epitope located between P(85) and P(96) which contains the essential contact residues H(88)FFK(91) for the trimolecular complex. The purpose of this Phase I open label clinical study was to monitor CSF anti-MBP in patients with chronic progressive MS subsequent to IV administration of synthetic peptide (sp) MBP82-98 namely DEN(85)VVHFFKNIVTP(96)RT. Fifty-six patients who participated in this project were assigned to two groups: a 'control group' of 15 patients who received IV saline injections every 6 months for the first 2 years of the study and a 'peptide group' of 41 patients who received IV spMBP82-98 from the beginning of the study and then infrequently subsequent to a rise of their CSF anti-MBP. In the control group antibody levels remained persistently elevated during the 2 year period. Patients in the 'peptide group' segregated into four kinetic profiles: Cohort A (15 patients) illustrated prolonged anti-BMP suppression into the normal range. Cohort B (10 patients) illustrated significant anti-MBP suppression into the normal range for shorter durations. Cohort C (eight patients) showed significant CSF anti-MBP suppression after the initial injection but lost the ability to suppress the autoantibody titer following subsequent injections. Cohort D (eight patients) failed to show significant CSF anti-MBP suppression. In conclusion the B cell tolerizing effect of spMBP82-98 segregated into four kinetic profiles; this molecular variability should be considered in attempts to develop specific 'peptide therapies' for the broad range of clinical profiles currently diagnosed as 'multiple sclerosis'. Multiple Sclerosis (2000) 6 300 - 311

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.