Abstract

On the basis of the duality of the shish-kebab superstructure, coil–stretch transition (CST) is well recognized as the molecular mechanism for shish-kebab formation in polymer melts, which, however, is challenged by recent results in flow-induced crystallization (FIC). In this work, we perform a real time investigation on FIC of polyethylene bimodal blends by combing a unique homemade extensional rheometer and synchrotron radiation small-angle X-ray scattering. The results show that the critical strain for shish formation decreases with increasing long chain concentration, which contradicts the role of CST but agrees well with stretched network model (SNM). Quantitative analyses indicate that the formation of shish is determined by the degree of network deformation rather than solely by strain or long chain concentration at a specific temperature. In addition, three types of shish with different stability are observed sequentially by increasing strain. On the basis of our results, strong support is given ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call