Abstract

Silicon and germanium transform from diamond to β-tin structure under compression, but upon decompression they turn into metastable BC8 Si and ST12 Ge phases, respectively, instead of returning to the lowest-enthalpy diamond structure. Here we explore by first-principles calculations the atomistic mechanism underlying this intriguing phenomenon. We identify a body-centered tetragonal structure in I4(1)/a (C(4h)(6)) symmetry as a precursory state of the BC8 Si phase formed via a double cell bond-rotation mechanism with a low kinetic barrier. Kinetics also play a central role in selecting the decompression pathway in Ge via a trinary cell bond-twisting reconstruction process toward the ST12 Ge phase. In both cases, transformation back to energetically more favorable diamond structure is inhibited by the higher enthalpy barrier. These results explain experimental findings and highlight the kinetic origin of the divergent decompression pathways in Si and Ge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.